Beredskapsanalyse: Johan Sverdrup
<table>
<thead>
<tr>
<th>Tittel:</th>
<th>Beredskapsanalyse: Johan Sverdrup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dokumentnr.:</td>
<td>Kontrakt:</td>
</tr>
<tr>
<td>Gradering:</td>
<td>Distribusjon:</td>
</tr>
<tr>
<td>Åpen</td>
<td>Kan distribueres fritt</td>
</tr>
<tr>
<td>Utløpsdato:</td>
<td></td>
</tr>
<tr>
<td>Utgivelsesdato:</td>
<td>Rev. nr.:</td>
</tr>
<tr>
<td>Forfatter(e)/Kilde(r):</td>
<td></td>
</tr>
<tr>
<td>Omhandler (fagområde/emneord):</td>
<td></td>
</tr>
<tr>
<td>Beredskap mot akutt forurensning, analyse, krav</td>
<td></td>
</tr>
<tr>
<td>Merknader:</td>
<td></td>
</tr>
<tr>
<td>Trer i kraft:</td>
<td></td>
</tr>
<tr>
<td>Ansvarlig for utgivelse:</td>
<td></td>
</tr>
<tr>
<td>Myndighet til å godkjenne fravik:</td>
<td></td>
</tr>
<tr>
<td>Fagansvarlig (organisasjonsenhет/ navn):</td>
<td></td>
</tr>
<tr>
<td>TPD TEX SSC EIA Endre Aas</td>
<td>Dato/Signatur:</td>
</tr>
<tr>
<td>Utarbeidet (organisasjonsenhет/ navn):</td>
<td></td>
</tr>
<tr>
<td>TPD TEX SSC EIA ET Vilde Krey Valle</td>
<td>Dato/Signatur:</td>
</tr>
<tr>
<td>Anbefalt (organisasjonsenhет/ navn):</td>
<td></td>
</tr>
<tr>
<td>TPD TEX SSC EIA Arne Myhrvold</td>
<td>Dato/Signatur:</td>
</tr>
<tr>
<td>Godkjent (organisasjonsenhет/ navn):</td>
<td></td>
</tr>
<tr>
<td>TPD TEX SSC EIA Marianne B. Tangvald</td>
<td>Dato/Signatur:</td>
</tr>
</tbody>
</table>
Innhold

1 Innledning ... 4
2 Definisjoner .. 5
3 Ytelseskrav ... 6
4 Metodikk .. 7
 4.1 Dimensjonering av barriere 1 og 2 – nær kilden og åpent hav .. 7
 4.2 Dimensjonering av barriere 3 og 4 – Kyst og strandsone ... 7
4.3 Dimensjonering av barriere 5 – strandrensning ... 8
5 Analysegrunnlag ... 8
 5.1 Utslippsscenarioer .. 8
 5.2 Øljens egenskaper – barriere 1 og 2 ... 9
 5.3 Miljøbetingelser – oljeverntakser ... 9
 5.3.1 Operasjonslys .. 10
 5.3.2 Bølgeforhold åpent hav .. 11
 5.3.3 Bølgeforhold kystnært ... 12
 5.3.4 Øljeverntakser – utstyrsplassering og forutsetninger .. 12
 5.4 Resultater fra oljedriftsberegninger – influensområder og strandning av emulsjon 15
6 Administrative grenser for aktuelle IUA .. 21
7 Resultater – beredskapsbehov og responstider ... 22
 7.1 Barriere 1 og 2 .. 22
 7.1.1 Mindre utslipp – 100 m³ punktutsipp ... 22
 7.1.2 Medium utslipp – 2000 m³ punktutsipp ... 22
 7.1.3 Dimensjonerende hendelse – langvarig utblåsning 19780 m³/døgn 23
 7.2 Barriere 3 og 4 .. 24
 7.3 Barriere 5 25
8 Bruk av kjemisk dispergering som alternativ bekjempelse metode ... 26
9 Oppsummering av Statoils krav til beredskap mot akutt forurensning 28
10 Referanser ... 28
1 Innledning

På vegne av eierne planlegger Statoil ASA å utvikle Johan Sverdrup feltet i Nordsjøen. Johan Sverdrup feltet er lokaliseret i utvinningslittelsene PL 265 og PL 501, ca. 17 km øst fra Edvard Grieg feltet og omtrent 40 km sør for Grane/Balder. Lokasjonen som er valgt for miljørisikoanalysen ligger i blokk 16/2-6, 146 km fra nærmeste land som er Utsira kommune i Rogaland fylke (Figur 1-1).

I miljørisikoanalysen utført av DNV [1] er det valgt å se på to forskjellige brønndesign. Disse er kalt scenario 1 og scenario 2. Det henvises til miljørisikoanalysen for flere detaljer. I etterkant av analysen er det blitt valgt å gå videre med brønndesign for scenario 2, og det vil dermed kun bli referert til resultatene for dette scenariet i beredskapsanalysen.

En oppdatering av rateberegninger og utblåsningssannsynlighet for Johan Sverdrup er utført august 2014 [2], denne viser at gjeldene miljørisikoanalyse fortsatt vil være dekkende. Ratene for dimensjonerende hendelse er hentet fra oppdaterte rater fra teknisk notat [2].
2 Definisjoner

Barriere:
Fellesbetegnelse for en samlet aksjon i et avgrenset område. En barriere kan ha flere delbarrierer, som igjen kan inkludere ett eller flere beredskapssystem.

Barrierekapasitet:
Summen av systemkapasitetene i en barriere. På samme måte som for systemkapasitet vil oppnåelse av barrierekapasitet forutsette at tilgangen til oljen er tilstrekkelig til at systemets kapasitet kan utnyttes fullt.

Barriere-effektivitet:

Gangtid:
Tiden det tar å frakte personell og utstyr med fartøy fra hentested (base) til stedet der aksjonen skal gjennomføres.

Grunnberedskap
1 Kystsystem (type A eller B) og 1 Fjordsystem (type A eller B).

IKV:
Indre Kystvakt

IUA:
Interkommunalt utvalg mot akutt forurensning

Korteste drivtid:
95-persentilen i utfallsrommet for korteste drivtid til kysten.

KYV:
Kystverket

NOFO:
Norsk Oljevernforening for Operatørselskap

OR-fartøy:
Oil Recovery-fartøy som inngår i NOFO sin fartøyspool.

OSRL:
Oil Spill Response Limited

Prioriteret område:
Til bruk i beredskapsplanleggingen er det definert arealer kalt prioriterede områder (basert på en vurdering av tidligere eksempelområder i NOFO). Disse er karakterisert ved at de ligger i ytre kystsone, har høy tetthet av miljøprioriterte lokaliteter og som også på andre måter setter strenge krav til oljevernberedskapen. Disse områdene er derfor forhåndsdefinert som dimensjonerende for oljevernberedskapen.
Responstid:
Sammenlagt mobiliserings tid, klargjøringstid og gangtid.

Størst strandet mengde:
95-per sentilen i utfallsrommet for størst emulsjons mengde til eksempelområdet.

Systemkapasitet:
Forventet oppsamlings rate i m3/d for ett system; med regnet lossetid, ineffektiv tid, fritt vann, osv.

System-effektivitet:
Prosentandel av sveipet overflateolje som samles opp av ett system. Gjelder for ett NOFO-system.

3 Ytelseskrav

Målet for oljevernerberedskap er å redusere miljørisiko. For aktiviteten skal det etableres en beredskap mot akutt forurensning som tilfredsstiller de ytelseskrav som er definert av Statoil. Statoils ytelseskrav for de ulike barrierene er beskrevet under [3].

Barriere 1: Skal ha tilstrekkelig kapasitet til å kunne bekjempe beregnet emulsjons mengde på sjø. Første system innen best oppnåelig responstid. Full kapasitet snarest mulig og senest innen 95-per sentilen av korteste driv tid til land, basert på beregnet kapasitets behov. Statoil setter, som et minimum, krav til tilstrekkelig kapasitet til å bekjempe et oljeutslipp ≤ 500 m3 med ressurser som skal være klar for operasjon innen 5 timer etter at utslippet er oppdaget.

Barriere 2: Skal ha tilstrekkelig kapasitet til å kunne bekjempe den mengden emul sjon som passerer barriere 1 på grunn av operative begrensninger. Første system skal mobiliseres fortløpende etter at systemene i barriere 1 er mobilisert og med full kapasitet innen 95-per sentilen av korteste driv tid til land.

Barriere 3 og 4: Skal ha tilstrekkelig kapasitet til å kunne bekjempe 95-per sentilen av maksimal strandet mengde emulsjon innen influensområdet. Systemene skal være mobilisert innen 95-per sent il av korteste driv tid til land.

Barriere 5: Skal ha tilstrekkelig kapasitet til å kunne bekjempe 95-per sentilen av maksimalt strandet mengde emulsjon inn til et prioritert område. Personell og utstyr til strandsanering skal være klar til operasjon innen 95-per sentilen av korteste driv tid inn til prioritert område for de berørte områder med kortere driv tid enn 20 døgn. En plan for grovrens ning av forurenset strand skal utarbeides senest innen 7 døgn fra registrert påslag av oljeemulsjon. Grovrensning av de påslagsområder som prioriteres av operasjonsle delsen i samråd med aksjonsledelsen skal være gjennomført innen 100 døgn fra plan for grovrensning foreligger, forutsatt at dette kan gjennomføres på en sikkerhetsmessig forsvarlig måte.
4 Metodikk

Statoils krav til beredskap mot akutt forurensning er satt ut fra Statoils forutsetninger og metode for beredskapsdimensjonering i alle barrierer [4,5], som også er i tråd med forutsetninger og metodikk som benyttes i Norsk Olje og Gass’ veiledning (tidligere OLF) [6] og NOFO [7].

Som grunnlag for analyse av kapasitet kan følgende systemer inngå i analysen og benyttes til bekjempelse av olje/emulsjon:

- Havgående NOFO-system
- Havgående Kystvaktssystem
- System Kyst A – IKV
- System Kyst B – KYV
- System Fjord A – NOFO/Operatør
- System Fjord B – IUA/KYV
- Dispergeringssystem (NOFO og OSRL)

4.1 Dimensjonering av barriere 1 og 2 – nær kilden og åpent hav

Beredskapsanalysen for barriere 1 og 2, nær kilden og på åpent hav, er basert på utblåsningsrate for produksjon, bore- og brønnaktivitet, og produserende oljetype. Beregninger er gjort for vintersesong og sommersesong.

For dimensjonering av barriere 1 benyttes egenskaper (fordamping, naturlig nedblanding og vannopptak) for 2 timer gammel olje. Det grunnleggende prinsippet er at kapasiteten i de ulike barrierene skal være tilstrekkelig til å kunne håndtere emulsjonsmengden ved de gitte betingelsene.

For dimensjonering av barriere 2 er det utført beregninger av antall systemer som kreves for å kunne bekjempe emulsjonsmengden som har passert barriere 1 pga redusert systemeffektivitet. Systemeffektiviteten er avhengig av bølgehøyde og lysforhold, og varierer mellom de ulike områdene (Nordsjøen, Norskehavet og Barentshavet) på norsk sokkel. Disse dataene hentes fra NOFO sine nettsider. I beregningen av systembehov for barriere 2 benyttes oljeegenskaper for 12 timer gammel olje.

Kravene til responstid er satt til best oppnåelig responstid for NOFO-fartøyer med mekanisk oppsamling til feltet, og er basert på avstand til oljeevnenheter, gangfart for OR-fartøy, slepebåtkapasitet og gangfart for disse, mobilisering av oljeevneutstyr om bord på OR-fartøy, og tilgang til personell på basene. I tillegg kommer en vurdering opp mot krav om etablering av barriere 1 og 2 senest innen korteste drivtid til land (95-persentil av korteste drivtid til land).

4.2 Dimensjonering av barriere 3 og 4 – Kyst og strandsone

For barriere 3 og 4, bekjempelse av olje i kyst- og strandsone, er kravene til beredskap satt ut fra størst behov ved å bruke to alternative tilnærmeringer:

• Prioriterte områder som er berørt av stranding med drivtid kortere enn 20 døgn (ifølge oljedriftssimuleringer) skal kunne ha tilgang til grunnberedskap. Grunnberedskap er definert som 1 Kystsyste (type A eller B) og 1 Fjordsyste (type A eller B). Beredskapsressursene skal brukes der det er mest hensiktsmessig og er ikke begrenset til de prioriterte områdene.

Denne tilnærmingen medfører at Statoil dimensjonerer både for volumer og utstrekning av strandet emulsjon, og legger til grunn den største behovet når krav til beredskap i barriere 3 og 4 settes.

Statoil stiller krav til at beredskapen i barriere 3 og 4 skal være etablert innen 95%-persentilen av korteste drivtid til land. Dersom drivtid til land er lenger enn 20 døgn settes det ikke spesifikke krav til beredskap i barriere 3 og 4.

4.3 Dimensjonering av barriere 5 – strandrensning

For barriere 5, bekjempelse av strandet olje, er det beregnet behov for antall strandrenselslag med tilstrekkelig kapasitet til å kunne bekjempe 95%-persentilen av maksimalt strandet mengde emulsjon, med kortere drivtid enn 20 døgn til prioriterte områder.

Statoil stiller krav til at beredskapen i barriere 5 skal være etablert innen 95%-persentilen av korteste drivtid til land til hvert prioritert område.

Basert på tidligere erfaringer antar man en rensekapasitet på 0,18 tonn per dagsverk. Statoil har valgt å gjøre beregninger for vinterstid og lagt inn en effektivitetsfaktor per dagsverk på 0,5. Hvert strandrenselslag består av 10 personer.

5 Analysegrunnlag

5.1 Utslippsscenarier

Tabell 5-1 gir en oversikt over utslippsscenarier som er lagt til grunn for beredskapsanalysen for Johan Sverdrup:

<table>
<thead>
<tr>
<th>Type utslipp</th>
<th>Kilde</th>
<th>Referanse – bakgrunn for rate/volum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utblåsning – 19780 m³/døgn</td>
<td>Langvarig utblåsning fra reservoar</td>
<td>*Dimensjonerende utblåsningsrate</td>
</tr>
<tr>
<td>Middels utslipp – 2000 m³ punktutslipp</td>
<td>Eksempel; lekkasje fra brønn</td>
<td>Volum bestemt ut fra faglig vurdering og informasjon fra miljøsikloanalyse</td>
</tr>
<tr>
<td>Mindre utslipp – 100 m³ punktutslipp</td>
<td>Eksempel; lekkasje fra brønn</td>
<td>Volum bestemt ut fra faglig vurdering og informasjon fra miljøsikloanalyse</td>
</tr>
</tbody>
</table>

*den dimensjonerende raten er konservativt valgt på grunnlag av vekted borerate (høyaktivitetsår), da denne raten var høyere enn P90 raten i ratefordelingen. Se oppdatert Blowout Scenario Analysis for Johan Sverdrup feltet [2].
5.2 Oljens egenskaper – barriere 1 og 2

Tabell 5-2 Forvitringsegenskaper til Avaldsnes olje

<table>
<thead>
<tr>
<th>Parameter – Avaldsnes olje</th>
<th>Vinter, Temperatur 5 °C, 10 m/s vind</th>
<th>Sommer, Temperatur 15 °C, 5 m/s vind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanninnhold (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 timer</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>12 timer</td>
<td>57</td>
<td>32</td>
</tr>
<tr>
<td>Fordampning (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 timer</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>12 timer</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Nedblanding (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 timer</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>12 timer</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Viskositet av emulsjon (cP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 timer</td>
<td>1000</td>
<td>260</td>
</tr>
<tr>
<td>12 timer</td>
<td>11000</td>
<td>1400</td>
</tr>
</tbody>
</table>

Avaldsnes oljen har høy tetthet (0,891 g/ml), lavt voksinnhold (2,9 vekt %), og et relativt høyt asalteninnhold (1,8 vekt %) sammenlignet med andre norske råoljer. Forvitringsstudiet til Avaldsnes oljen viser at den kan bli karakterisert som en parafinsk råolje, men på grunn av høy asalteninnhold blir den karakterisert som en asfaltenolje med parafinske egenskaper. Ved et oljeutslipp på sjø vil den initielle fordampningen føre til en økning i voks- og asalteninnhold. Som følge av forhøyet innhold av tunge komponenter vil de fysiske egenskapene til oljen endres. Avaldsnes danner stabile emulsjoner med høy viskositet, både ved vinter- og sommerforhold. Det er forventet at Avaldsnes olje vil ha en relativ lang levetid på sjø, selv ved en vindhastighet på 10 m/s. Ved høy sjøstand (15 m/s) vil kombinasjonen av fordampning og naturlig dispergering korte ned den forventede levetiden noe.

5.3 Miljøbetingelser – oljevernressurser

Ytelsen til enhetene som inngår i en aksjon mot akutt forurensning – målt i bekjempet mengde oljeemulsjon pr. døgn, er en funksjon av følgende forhold:

- Andel av tiden enheten kan operere (mørke/reduert sikt og bølgeforhold)
5.3.1 Operasjonslys

Andel operasjonslys inngår i beregning av ytelsen og effektiviteten til enhetene som inngår i en aksjon mot akutt forurensning. Statoil har valgt å beregne operasjonslys for 5 regioner, se Figur 5-1. For Johan Sverdrup (region 2) er operasjonslys oppsummert i Tabell 5-3.

Figur 5-1 Operasjonslys for region 2

Tabell 5-3 Andel operasjonslys i region 2

<table>
<thead>
<tr>
<th></th>
<th>Vinter</th>
<th>Vår</th>
<th>Sommer</th>
<th>Høst</th>
<th>År</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operasjonslys</td>
<td>38 %</td>
<td>66 %</td>
<td>80 %</td>
<td>50 %</td>
<td>58 %</td>
</tr>
</tbody>
</table>
5.3.2 Bølgeforhold åpent hav

Bølgeforhold på åpent hav inngår i beregning av effektiviteten og ytelsen til enhetene som inngår i en aksjon mot akutt forurensning i barriere 1 og 2. Statoil har bølgedata for 27 stasjoner, som vist i Figur 5-2. Stasjon 3 er antatt å best representere bølgeforholdene ved Johan Sverdrup. Antatt gjennomsnittlig opptakseffektivitet for NOFO- og Kystvaktsystem (som kan brukes i både barriere 1 og 2) er oppsummert i Tabell 5-4. Antatt andel av tiden hvor bølgeforholdene tillater operasjon er oppsummert i Tabell 5-5.

![Stasjonsoverføring](image)

Figur 5-2 Stasjoner brukt i beregning av bølgeforhold for åpent hav

Tabell 5-4 Gjennomsnittlig opptakseffektivitet, gitt bølgeforhold ved Johan Sverdrup (antatt stasjon 3)

<table>
<thead>
<tr>
<th></th>
<th>Vinter</th>
<th>Vår</th>
<th>Sommer</th>
<th>Høst</th>
<th>År</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFO-system</td>
<td>50 %</td>
<td>66 %</td>
<td>78 %</td>
<td>60 %</td>
<td>64 %</td>
</tr>
<tr>
<td>Kystvakt-system</td>
<td>37 %</td>
<td>56 %</td>
<td>70 %</td>
<td>48 %</td>
<td>63 %</td>
</tr>
</tbody>
</table>

Tabell 5-5 Andel av tiden hvor bølgeforholdene tillater operasjon, gitt bølgeforhold ved Johan Sverdrup (antatt stasjon 3)

<table>
<thead>
<tr>
<th></th>
<th>Vinter</th>
<th>Vår</th>
<th>Sommer</th>
<th>Høst</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFO-system (Hs < 4 m)</td>
<td>75 %</td>
<td>91 %</td>
<td>99 %</td>
<td>86 %</td>
</tr>
<tr>
<td>NOFO-dispergering (Hs < 4 m)</td>
<td>75 %</td>
<td>91 %</td>
<td>99 %</td>
<td>86 %</td>
</tr>
<tr>
<td>Kystvakt-system (Hs < 3 m)</td>
<td>54 %</td>
<td>79 %</td>
<td>95 %</td>
<td>70 %</td>
</tr>
</tbody>
</table>
5.3.3 **Bølgeforhold kystnært**

Bølgeforhold i kystsonen inngår i beregning av effektiviteten og ytelsen til enhetene som inngår i en aksjon mot akutt forurensning i barriere 3 og 4. Statoil har bølgedata for 5 stasjoner, som vist i Figur 5-3. Stasjon 4 og 3 er antatt mest konservative med tanke på å representere bølgeforholdene i henholdsvis kyst- og fjordsystem. Antatt gjennomsnittlig opptakseffektivitet for kyst- og fjordsystem er oppsummert i Tabell 5-6. Antatt andel av tiden hvor bølgeforholdene tillater operasjon er oppsummert i Tabell 5-7.

![Bølgeforhold kystnært](image)

Figur 5-3 Stasjoner brukt i beregning av bølgeforhold i kystsonen. Valgt som representativ for Norskekysten

Tabell 5-6 Gjennomsnittlig opptakseffektivitet gitt bølgeforhold ved stasjon 4 (kystsystem) og 3 (fjordsystem)

<table>
<thead>
<tr>
<th></th>
<th>Vinter</th>
<th>Vår</th>
<th>Sommer</th>
<th>Høst</th>
<th>År</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyst-system</td>
<td>39 %</td>
<td>55 %</td>
<td>65 %</td>
<td>47 %</td>
<td>51 %</td>
</tr>
<tr>
<td>Fjord-system</td>
<td>66 %</td>
<td>66 %</td>
<td>72 %</td>
<td>68 %</td>
<td>68 %</td>
</tr>
</tbody>
</table>

Tabell 5-7 Andel av tiden hvor bølgeforholdene tillater operasjon for kyst- og fjordsystem, gitt bølgeforhold ved stasjon 4 og 3.

<table>
<thead>
<tr>
<th></th>
<th>Vinter</th>
<th>Vår</th>
<th>Sommer</th>
<th>Høst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyst-system (Hs < 1,5 m)</td>
<td>56 %</td>
<td>78 %</td>
<td>93 %</td>
<td>68 %</td>
</tr>
<tr>
<td>Fjord-system (Hs < 1 m)</td>
<td>91 %</td>
<td>92 %</td>
<td>100 %</td>
<td>94 %</td>
</tr>
</tbody>
</table>

5.3.4 **Oljevernressurser – utstyrsplassering og forutsetninger**

Figur 5-4 viser plasseringen av NOFO-utstyr per september 2014. Avstanden fra aktuelle oljevernressurser til Johan Sverdrup er brukt som grunnlag for beredskapsanalysen.
Figur 5-4 NOFOs utstyrsoversikt per september 2014.
Tabell 5-8 Avstander fra Johan Sverdrup til oljevernressurser benyttet i analysen

<table>
<thead>
<tr>
<th>Oljevernressurser</th>
<th>Avstand fra Johan Sverdrup (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skandi Hugen - Ekofisk</td>
<td>149</td>
</tr>
<tr>
<td>Stril Mariner - Ula Gyda Tamber</td>
<td>108</td>
</tr>
<tr>
<td>Esvagt Bergen - Sleipner</td>
<td>34</td>
</tr>
<tr>
<td>NOFO Base - Stavanger</td>
<td>95</td>
</tr>
<tr>
<td>Stril Power - Balder</td>
<td>29</td>
</tr>
<tr>
<td>Esvagt Stavanger - Oseberg</td>
<td>106</td>
</tr>
<tr>
<td>Stril Merkur - Avløserfartøy (posisjon Haltenbanken)</td>
<td>402</td>
</tr>
<tr>
<td>Havila Troll - Troll</td>
<td>123</td>
</tr>
<tr>
<td>NOFO Base - Mongstad</td>
<td>149</td>
</tr>
<tr>
<td>Stril Herkules - Tampen</td>
<td>142</td>
</tr>
<tr>
<td>Ocean Alden - Gjøa</td>
<td>156</td>
</tr>
<tr>
<td>NOFO Base - Kristiansund</td>
<td>322</td>
</tr>
<tr>
<td>Stril Poseidon - Haltenbanken</td>
<td>402</td>
</tr>
<tr>
<td>NOFO Base - Sandnessjøen</td>
<td>526</td>
</tr>
<tr>
<td>NOFO Base - Hammerfest</td>
<td>915</td>
</tr>
<tr>
<td>Esvagt Aurora - Goliat</td>
<td>908</td>
</tr>
<tr>
<td>Redningsskøyte Egersund</td>
<td>115</td>
</tr>
<tr>
<td>Redningsskøyte Haugesund</td>
<td>94</td>
</tr>
<tr>
<td>Redningsskøyte Kleppestø</td>
<td>130</td>
</tr>
<tr>
<td>Redningsskøyte Måloy</td>
<td>208</td>
</tr>
<tr>
<td>Redningsskøyte Kristiansund</td>
<td>316</td>
</tr>
<tr>
<td>Redningsskøyte Rørvik</td>
<td>452</td>
</tr>
<tr>
<td>Redningsskøyte Ballstad (Lofoten)</td>
<td>633</td>
</tr>
<tr>
<td>Redningsskøyte Sørvær (Sørøya)</td>
<td>876</td>
</tr>
<tr>
<td>Redningsskøyte Båtsfjord</td>
<td>1058</td>
</tr>
<tr>
<td>Redningsskøyte Vadsø</td>
<td>1142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gangfart, OR-fartøy</th>
<th>14 knop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilisering, klargjøring, lasting og lossing på base – system 1 fra NOFO-base</td>
<td>10 timer</td>
</tr>
<tr>
<td>Mobilisering av system 2 fra NOFO-base</td>
<td>30 timer</td>
</tr>
<tr>
<td>Mobilisering av system 3 fra NOFO-base</td>
<td>48 timer</td>
</tr>
</tbody>
</table>

Avgivelsetidstid for beredskapsfartøyer

- **Tampen**: 1 time
- **Troll/Oseberg**: 1 time - første system, 1 time - andre system
Balder: 6 timer
Haltenbanken: 1 time
Gjøa: 4 timer
Sleipner/Volve: 3 timer
Ula/Gyda: 6 timer
Ekofisk/Sør-feltene: 6 timer
Esvagt Aurora: 4 timer

<table>
<thead>
<tr>
<th>Responstid for slepefartøy</th>
<th>Slepefartøy fra NOFO-pool: 24 timer</th>
<th>Redningsskjøyer: 20 knop hastighet, 2 timer frigivelsesstid.</th>
</tr>
</thead>
</table>
| | | • Egersund
 | | • Haugesund
 | | • Kleppefjord
 | | • Måløy
 | | • Kristiansund – N
 | | • Rørvik
 | | • Ballstad
 | | • Sørvær
 | | • Båtsfjord
 | | • Vadsø |

| Tid til å sette lensene ut på sjøen | 1 time |

5.4 Resultater fra oljedriftsberegninger – influensområder og stranding av emulsjon

Figur 5-5 Sannsynligheten for treff av mer enn 1 tonn olje i 10 × 10 km sjøruter gitt en overflateutblåsning fra Johan Sverdrup feltet i hver sesong for Scenario 2. Influensområdet er basert på alle utslippsrater og varigheter og deres individuelle sannsynligheter. Merk at det markerte området ikke viser omfanget av et enkelt oljeutslipp, men er det området som berøres i mer enn 5 % av enkeltsimuleringene av oljens drift og spredning innenfor hver sesong.
Figur 5-6: Sannsynligheten for treff av mer enn 1 tonn olje i 10 × 10 km sjøruter gitt en sjøbunnutblåsning fra Johan Sverdrup feltet i hver sesong for scenario 2. Influensområdet er basert på alle utslippsrater og varigheter og deres individuelle sannsynligheter. Merk at det markerte området ikke viser omfanget av et enkelt oljeutslipp, men er det området som berøres i mer enn 5 % av enkeltsimuleringene av oljens drift og spredning innenfor hver sesong.
Figur 5-5 Sannsynligheten for treff av olje i mengdekategoriene 1-100 tonn, 100-500 tonn, 500-1000 tonn og >1000 tonn, gitt en overflateutblåsning fra Johan Sverdrup- for hele året, scenario 2. Influensområdet er basert på alle utslippsrater og varigheter og deres individuelle sannsynligheter. Merk at det markerte området ikke viser omfanget av et enkelt oljeutslipp, men er det området som berøres i mer enn 5 % av enkeltsimuleringene av oljens drift og spredning.
Figur 5-6 Sannsynligheten for treff av olje i mengdekategoriene 1-100 tonn, 100-500 tonn, 500-1000 tonn og >1000 tonn, gitt en sjøbunnsutblåsning fra Johan Sverdrup for hele året, scenario 2. Influensområdet er basert på alle utslippsrater og varigheter og deres individuelle sannsynligheter. Merk at det markerte området ikke viser omfanget av et enkelt oljeutslipp, men er det området som berøres i mer enn 5 % av enkeltsimuleringene av oljens drift og spredning.

Tabell 5-9 Korteste drivtid til land og strandingsmengder av olje/emulsjon for Johan Sverdrup feltet gitt en overflate- og sjøbunnsutslipp (95-perzentiler).

<table>
<thead>
<tr>
<th>Persentil</th>
<th>Maksimal strandet emulsionsmengde (tonn)</th>
<th>Korteste drivtid (døgn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sommer</td>
<td>Vinter</td>
</tr>
<tr>
<td>95</td>
<td>55053</td>
<td>38194</td>
</tr>
</tbody>
</table>

Statoil har identifisert og definert en rekke prioriterte områder langs kysten [5]. Disse områdene er et utvalg av NOFOs eksempeområder.

Influensområdet til Johan Sverdrup inneholder 9 prioriterte områder med kortere drivtid enn 20 døgn (95 persentil). Se Tabell 5-10.

Tabell 5-10 Eksempelområder som blir truffet av olje/emulsjon gitt et utslipp fra Johan Sverdrup fordelt på sommer- og vintersesongen (95-perzentil)

<table>
<thead>
<tr>
<th>Eksempelområde</th>
<th>Sommer</th>
<th>Vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maksimal strandet emulsionsmengde (tonn)</td>
<td>Korteste drivtid (døgn)</td>
</tr>
<tr>
<td>Ytre Sula</td>
<td>1527</td>
<td>13,3</td>
</tr>
<tr>
<td>Atloy Væerlandet</td>
<td>3009</td>
<td>15,4</td>
</tr>
<tr>
<td>Sverslingsosen Skorpa</td>
<td>4295</td>
<td>16,8</td>
</tr>
<tr>
<td>Runde</td>
<td>3387</td>
<td>24,7</td>
</tr>
<tr>
<td>Onøy Øygarden</td>
<td>2551</td>
<td>13</td>
</tr>
<tr>
<td>Austevoll</td>
<td>1323</td>
<td>15,6</td>
</tr>
<tr>
<td>Nord-Jæren</td>
<td>1509</td>
<td>35,8</td>
</tr>
<tr>
<td>Bømlo</td>
<td>1096</td>
<td>23,4</td>
</tr>
<tr>
<td>Utsira</td>
<td>997</td>
<td>14,5</td>
</tr>
</tbody>
</table>

For alle prioriterte områder er det utarbeidet strategiplaner og kartmateriale. De detaljerte strategiplanene beskriver tiltak tilpasset ressurstypen(e) som skal beskyttes, med tiltak som følger:
- Fokus på oppstrøms bekjempelse med tyngre systemer, samt kjemisk dispergering
- Oppsamling innen området med systemer tilpasset operationsdyp
- Bekjempelse nedstrøms («lesiden») med egnede systemer
- Strandnær oppsamling, fokusert på identifiserte vraviker/rekvedfjører
- Fremskutt depot for strandnær oppsamling og strandrensing på forhåndsdefinerte steder

Følgende kart foreligger for alle prioriterte områder:
- Basiskart
- Verneområder
- Operationsdyp og tørrfallsområder
- Strandtyper
- Adkomst og infrastruktur
6 Administrative grenser for aktuelle IUA

En oversikt over IUAer er vist i Figur 6-1.

Figur 6-1 Beredskapsregionene sør for Lofoten
7 Resultater – beredskapsbehov og responstider

7.1 Barriere 1 og 2

7.1.1 Mindre utslipp – 100 m³ punktutslipp

<table>
<thead>
<tr>
<th>Parameter - Avaldsnes olje</th>
<th>Vinter – 5 °C, 10 m/s vind</th>
<th>Sommer – 15 °C, 5 m/s vind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utslippsvolum (Sm³)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Fordampning etter 2 timer på sjø (%)</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Nedblanding etter 2 timer på sjø (%)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Oljemengde tilgj. for emulsjonsdannelse (Sm³/d)</td>
<td>80</td>
<td>87</td>
</tr>
<tr>
<td>Vannopptak etter 2 timer på sjø (%)</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>Emulsjonsmengde for opptak i barriere 1 (Sm³/d)</td>
<td>99</td>
<td>94</td>
</tr>
<tr>
<td>Viskositet av emulsjon inn til barriere 1 (cP)</td>
<td>1000</td>
<td>260*</td>
</tr>
<tr>
<td>Behov for NOFO-systemer</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Viskositeten av emulsjonen er svært lav. Her forventes det et betydelig lensetap før emulsjonen har nådd tilstrekkelig tykkelse.

7.1.2 Medium utslipp – 2000 m³ punktutslipp

<table>
<thead>
<tr>
<th>Parameter - Avaldsnes olje</th>
<th>Vinter – 5 °C, 10 m/s vind</th>
<th>Sommer – 15 °C, 5 m/s vind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utslippsvolum (Sm³)</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Fordampning etter 2 timer på sjø (%)</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Nedblanding etter 2 timer på sjø (%)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Oljemengde tilgj. for emulsjonsdannelse (Sm³/d)</td>
<td>1600</td>
<td>1740</td>
</tr>
<tr>
<td>Vannopptak etter 2 timer på sjø (%)</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>Emulsjonsmengde for opptak i barriere 1 (Sm³/d)</td>
<td>1975</td>
<td>1871</td>
</tr>
<tr>
<td>Viskositet av emulsjon inn til barriere 1 (cP)</td>
<td>1000</td>
<td>260*</td>
</tr>
<tr>
<td>Behov for NOFO-systemer</td>
<td>2**</td>
<td>2**</td>
</tr>
</tbody>
</table>

*Viskositeten av emulsjonen er svært lav. Her forventes det et betydelig lensetap før emulsjonen har nådd tilstrekkelig tykkelse.

* 2 NOFO-systemer for å sikre fleksibilitet og robusthet i beredskapsløsningen
7.1.3 Dimensjonerende hendelse - langvarig utblåsning 19780 m³/døgn

<table>
<thead>
<tr>
<th>Parameter - Avaldsnes olje</th>
<th>Vinter – 5 °C, 10 m/s vind</th>
<th>Sommer – 15 °C, 5 m/s vind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utstrømningsrate (Sm³/d)</td>
<td>19780</td>
<td>19780</td>
</tr>
<tr>
<td>Fordampning etter 2 timer på sjø (%)</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Nedblanding etter 2 timer på sjø (%)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Oljemengde tilg. for emulsjonsdannelse (Sm³/d)</td>
<td>15824</td>
<td>17209</td>
</tr>
<tr>
<td>Vannoptakt etter 2 timer på sjø (%)</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>Emulsjonsmengde for opptak i barriere 1 (Sm³/d)</td>
<td>19536</td>
<td>18504</td>
</tr>
<tr>
<td>Fordampning etter 12 timer på sjø (%)</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Nedblanding etter 12 timer på sjø (%)</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Oljemengde tilg. for emulsjonsdannelse (Sm³/d)</td>
<td>8058</td>
<td>4377</td>
</tr>
<tr>
<td>Vannoptakt etter 12 timer på sjø (%)</td>
<td>57</td>
<td>32</td>
</tr>
<tr>
<td>Emulsjonsmengde for opptak i barriere 2 (Sm³/d)</td>
<td>18741</td>
<td>6437</td>
</tr>
<tr>
<td>Viskositet av emulsjon inn til barriere 1 (cP)</td>
<td>1000</td>
<td>260*</td>
</tr>
</tbody>
</table>

Behov for NOFO-systemer i barriere 1

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemeffektivitet, barriere 1 (%)</td>
<td>39</td>
<td>73</td>
</tr>
<tr>
<td>Emulsjonsmengde til barriere 2 (Sm³/d)</td>
<td>11844</td>
<td>5061</td>
</tr>
<tr>
<td>Oljemengde til barriere 2 (Sm³/d)</td>
<td>9593</td>
<td>4707</td>
</tr>
<tr>
<td>Fordampning etter 12 timer på sjø (%)</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Nedblanding etter 12 timer på sjø (%)</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Oljemengde tilg. for emulsjonsdannelse (Sm³/d)</td>
<td>8058</td>
<td>4377</td>
</tr>
<tr>
<td>Vannoptakt etter 12 timer på sjø (%)</td>
<td>57</td>
<td>32</td>
</tr>
<tr>
<td>Emulsjonsmengde for opptak i barriere 2 (Sm³/d)</td>
<td>18741</td>
<td>6437</td>
</tr>
<tr>
<td>Viskositet av emulsjon inn til barriere 2 (cP)</td>
<td>11000</td>
<td>1400</td>
</tr>
</tbody>
</table>

Behov for NOFO-systemer i barriere 2

| | 8 | 3 |

Viskositeten av emulsjonen er svært lav. Her forventes det et betydelig lensetap før emulsjonen har nådd tilstrekkelig tykkelse.

Johan Sverdrup har et beregnet behov for 17 NOFO systemer for å kunne håndtere dimensjonerende scenario (vintersesong), som er innenfor NOFOs kapasitet i barriere 1 og 2. Eksempel på mulig ressursdisponering som gir best oppnåelig responsstid er vist i Tabell 7-1. Merk at første system har en responsstid som overskrider Statoils krav om initiell respons innen 5 timer etter at et utslipp er oppdaget. Det er satt i gang en prosess som ser på muligheten for å endre frigivelsestiden for områdeberedskapen til Sleipner og Balder (Esvagt Bergen og Stril Power) da disse har lik gangtid til Johan Sverdrup. Dette må være på plass i forbindelse med utarbeidelsen av beredskapsplanen.

Tabell 7-1 Eksempel på disponering av oljevernressursene ved dimensjonerende hendelse ved Johan Sverdrup.

<table>
<thead>
<tr>
<th>Oljevernressurs</th>
<th>Avstand (nm)</th>
<th>Responsstid OR-fartøy/slepefartøy</th>
<th>Responsstid inkl. utsetting av lenser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esvagt Bergen</td>
<td>34</td>
<td>6 timer OR fartøy, 8 timer slepefartøy</td>
<td>8 timer</td>
</tr>
<tr>
<td>Stril Power</td>
<td>29</td>
<td>9 timer OR fartøy, 9 timer slepefartøy</td>
<td>9 timer</td>
</tr>
<tr>
<td>Esvagt Stavanger</td>
<td>106</td>
<td>10 timer OR fartøy,</td>
<td>10 timer</td>
</tr>
</tbody>
</table>
7.2 Barriere 3 og 4

95-perzentil av størst strandet emulsjonsmengde, gitt en utblåsning, er 55053 tonn for sommer og 38194 tonn for vinter. Tabell 7-2 gir en oversikt over beregning av systembehov i barriere 3 og 4.

Tabell 7-2 Beregnet ressursbehov for barriere 3 og 4 ved dimensjonerende hendelse

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vinter 5 °C - 10 m/s</th>
<th>Sommer 15 °C - 5 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-perzentil av strandet emulsjonsmengde (tonn)</td>
<td>38194</td>
<td>55053</td>
</tr>
<tr>
<td>Samlet barriereeffektivitet i barriere 1 (%)</td>
<td>39</td>
<td>73</td>
</tr>
</tbody>
</table>
Strandet mengde etter effekt av barriere 1 (tonn) | 23155 | 15057
Samlet barriereeffekttivitet i barriere 2 (%) | 18.6 | 36.3
Strandet mengde etter effekt av barriere 2 (tonn) | 18597 | 9588
Emulsjonsmengde tilgjengelig for opptak i barriere 3 (tonn/d) | 1860 | 959
Antatt behov for kystsystemer i barriere 3 | 13 | 7
Emulsjonsmengde tilgjengelig for opptak i barriere 4 (Sm³/d) | 1454 | 419
Antatt behov for fjordsystemer i barriere 4 | 19 | 6
Antall prioriterede områder (med drivtid mindre enn 20 døgn) | 9 | 9
Totalt behov i barriere 3 (inkludert grunnberedskap for prioriterte områder) | 13 | 9
Totalt behov i barriere 4 (inkludert grunnberedskap for prioriterte områder) | 19 | 9

Det settes krav til kapasitet tilsvarende 13 Kystsystemer (type A eller B) og 19 Fjordsystemer (type A eller B) i barriere 3 og 4 for Johan Sverdrup. Responstiden er satt til 6 døgn, som er korteste drivtid til land (95 persentil av modellresultater). Ytterligere ressurser og utstyr vil mobiliseres etter behov og iht. eksisterende avtaler mellom NOFO, Kystverket og de berørte IUAnene.

For hvert prioritert område er det behov for strategiplaner og detaljerte kart. Strategiplanene skal inneholde en kortfattet beskrivelse av operativ strategi og miljøstrategi for de prioriterte områdene.

7.3 Barriere 5

Basert på beregninger gjennomført for aktiviteter i Barentshavet, antar man en rensekapasitet på 0,18 tonn per dagsverk. Statoil har valgt å gjøre beregninger for vinterstid og lagt inn en effektivitetsfaktor på dagsverk på 0,5. Det er beregnet for at grovrensing skal være gjennomført innen 100 døgn. Strandsanering er beregnet på dagsverk, antall personer og avrundet opp til et antall strandrenselag. Hvert strandrenselag består av 10 personer. Tabell 7-3 gir en oppsummering av behov i barriere 5.

Tabell 7-3 Beregnet behov for antall strandrenselag ved dimensjonerende hendelse under sommer- og vinterforhold.

<table>
<thead>
<tr>
<th>Eksempelemålområde</th>
<th>Maksimal strandet emulsjonsmengde (tonn)</th>
<th>Korteste drivtid (døgn)</th>
<th>Antall strandrenselag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sommer</td>
<td>Vinter</td>
<td>Sommer</td>
</tr>
<tr>
<td>Ytre Sula</td>
<td>1527</td>
<td>1560</td>
<td>13,3</td>
</tr>
<tr>
<td>Atløy Værlandet</td>
<td>3009</td>
<td>1549</td>
<td>15,5</td>
</tr>
<tr>
<td>Sverlingsosen Skorpa</td>
<td>4295</td>
<td>1537</td>
<td>16,8</td>
</tr>
<tr>
<td>Runde</td>
<td>3387</td>
<td>1003</td>
<td>24,7</td>
</tr>
<tr>
<td>Onøy Øygarden</td>
<td>2551</td>
<td>2222</td>
<td>13</td>
</tr>
<tr>
<td>Austevoll</td>
<td>1323</td>
<td>1504</td>
<td>15,6</td>
</tr>
<tr>
<td>Nord-Jæren</td>
<td>1509</td>
<td>1468</td>
<td>35,8</td>
</tr>
<tr>
<td>Bømlo</td>
<td>1096</td>
<td>1079</td>
<td>23,4</td>
</tr>
<tr>
<td>Utsira</td>
<td>997</td>
<td>992</td>
<td>14,5</td>
</tr>
</tbody>
</table>
8 Bruk av kjemisk dispergering som alternativ bekjempelse metode

Avaldsnes olje har et godt potensiale for kjemisk dispergering, og anses som kjemisk dispergerbar frem til 9 timer ved vinterforhold (5 °C, 10 m/s) og litt i overkant av 1 døgn ved sommerforhold (15 °C, 5 m/s). Figur 8-1 og Figur 8-2 viser tidsrommet for kjemisk dispergering ved hhv. vinter- og sommerforhold.

Figur 8-1 Tidsrom for bruk av kjemisk dispergering av Avaldsnes olje ved vinterforhold (5 °C)
Kjemisk dispergering skal alltid vurderes med hensyn til faktiske observasjoner av naturressurser i området og værforhold:

- I perioden august til desember er forekomst av egg og larver generelt lav og kjemisk dispergering vil kunne være aktuelt bekjempningsmetode.
- I perioden januar til juli vil det kunne finnes fiskeegg og -larver i området, og mekanisk oppsamling vil i utgangspunktet være foretrukket bekjempelsesmetode.

Tabell 8-1 Viser et eksempel av beredskapsfartøyene som holder dispergeringsmidler ombord og assosiert responstid. I tillegg er det mulig å bruke dispergering fra fly gjennom NOFO sin avtale med Oil Spill Response Limited (OSRL). Endelig logistikklsøsning for flybåren dispergering må spesifiseres i beredskapsplan.

Tabell 8-1 Områdeberedskapsfartøy med dispergeringskapasitet med responstid til Johan Sverdrup feltet.

<table>
<thead>
<tr>
<th>Oljevernressurs</th>
<th>Lokasjon</th>
<th>Avstand til felt/brønn (nm)</th>
<th>Responstid (timer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stril Power</td>
<td>Balder</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>Havila Troll</td>
<td>Troll</td>
<td>123</td>
<td>10</td>
</tr>
<tr>
<td>Stril Herkules</td>
<td>Tampen</td>
<td>142</td>
<td>11</td>
</tr>
<tr>
<td>Stril Mariner</td>
<td>Ula Gyda Tamber</td>
<td>108</td>
<td>14</td>
</tr>
<tr>
<td>Ocean Alden</td>
<td>Gjøa</td>
<td>156</td>
<td>15</td>
</tr>
</tbody>
</table>
9 Oppsummering av Statoils krav til beredskap mot akutt forurensning

<table>
<thead>
<tr>
<th>Barriere 1 – 2 Bekjempelse nær kilden og på åpent hav</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemer og responstid</td>
<td>17 NOFO systemer. Første NOFO system innen 5 timer, fullt utbygd barriere innen 59 timer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barriere 3 – 4 Bekjempelse i kyst- og strandsone og strandsanering – dimensjonerende hendelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemer og responstid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barriere 5 Strandsanering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall strandrenselag og responstid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miljøundersøkelser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miljøundersøkelser igangsettes snarest mulig og senest innen 48 timer</td>
</tr>
</tbody>
</table>

10 Referanser

[7] NOFOs nettsider - www.nofo.no
[8] Kystverkets nettsider – kystverket.no